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J. Phys. A: Math. Gen. 14 (1981) 3367-3387. Printed in Great Britain 

Scaling properties of the entropy of polymer solutions 

David J Elderfield 
Department of Theoretical Physics, The University, Manchester M13 9PL, UK 

Received 14 April 1981 

Abstract. Direct renormalisation group equations are derived and solved for the entropy 
S(c,, L, { P ( x ) } ,  0,) of a polymer solution with specified polydispersity c,(x) 
c , ( l / L ) P ( x / L ) .  A two-parameter description of the universal scaling function s is 
developed which characterises the scaling behaviour of the entropy for all temperatures 
T 2 0, ‘the Flory temperature’, and all concentrations c,. Explicit representations are 
constructed parametrically for all values of the ‘overlap’ 0, - uL2c, to O(E* )  in the E 

expansion. Dilute solution expressions are reproduced, the limit 0, >> 1 of semi-dilute 
physics is discussed and a simple phenomenological model is proposed. 

1. Introduction and outline 

Following the work of des Cloizeaux (1980) and Schafer and Witten (1980, to be 
referred to as sw) on the scaling properties of polydisperse polymer solutions, we 
develop a parametric representation for the solution entropy S(c,, L, o,, { P ( x ) } )  valid 
for arbitrary polydispersity c , ( x )  throughout the physical domain. Here we have 
defined the reduced distribution P ( x  j, 

C , ( X )  = C,(l/L)P(X/L), (1.11 

such that the overall polymer concentration is cp, the average link number per polymer 
is L and o, = uL2c,  characterises the ‘overlap’ between the individual polymers. As 
usual the parameter U > O  is a measure of the short-range repulsive force between 
individual monomers. By means of a series of direct renormalisation group equations 
we show that the entropy S(c,, L, o,, { P ( x ) } )  may usefully be discussed in terms of a 
universal scaling function 3, 

s c , =  S - c , ( A L + B ) +  dx[c,(x) In c , ( x ) - c , ( x ) ] ,  (1.2) I 
which, depending only weakly on the nature of the reduced distribution, may otherwise 
be parametrised completely in terms of a renormalised link number 2 and overlap Gu. 
Extending the approach of Elderfield (1981, hereafter referred to as I) we develop a 
compact parametric representation for 3 valid for all values of & z= 0, 2 which is of the 
general form 
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where the parameter p E [0, 11 may be eliminated in terms of the renormalised polymer 
length 2 - L and renormalised overlap 6, - 0, through the relation 

(1.4) 

and where the function F(x, p )  is of the form 

+(4xp/3&)(1+;~)+(2 loops). (1.5) 

Heref(k)=$[1-(l /k2)(1-P(k2))] whereP(k2)=jdx  exp(-k*x). P(x) is theLaplace 
transform of the reduced distribution and the functions P (x), y(x), v(x) are known to at 
least O(x4) in the literature (see BrCzin et a1 1976). As usual the scale of p is determined 
by the Wilson-Fisher fixed point U * of the renormalisation group equations. We should 
also remark that the parameters A, B, 6,/0,, i / L  independent of cp, L summarise the 
effect of short-range correlations in the solution, so they are strongly model-dependent 
or non-universal and therefore of little intrinsic interest. 

Of course the primary limitation of the above representation is the evaluation of F, 
for even at the one-loop level, which corresponds rather paradoxically to an O(E’)  
correction, we will need to evaluate the integrals numerically. In general it is therefore 
a non-trivial task to gauge the degree to which the precise nature of the reduced 
distribution P(x) modifies the behaviour of S. We shall therefore seek a 
phenomenological representation exhibiting the correct analytic structure of s in the 
domains of dilute 0, << 1 and semi-dilute 0, >> 1 physics of particular interest and which 
for general values of the ‘overlap’ 0, should at least be numerically representative. In 
defence of (1.3) et seq., we should of course emphasise again that the one-loop 
approximation gives a representation for s valid up to corrections of O(e3)  in the e 
expansion, whilst the truncated expression F = 0 is sufficient to control the behaviour 
up to terms of ~ ( e ’ ) .  

For most practical purposes we shall be interested in the dilute 0, << 1 and semi- 
dilute o, >> 1 limits of the above representation. Here many simplifications occur and 
we find for dilute solutions the expressions derived in I: 

where g ( p )  = -pu*F(O, p )  and where p may be eliminated in terms of the scaling 
variable 2‘ =LE’’ through the relation 

Here g ( p )  may be developed as a power series in p u *  = O(E).  Similarly, in the 
semi-dilute region 6, >> 1, we obtain the parametric representation 

where if( p )  = pu  * lim,,,F(x, p)/x and where now p is to be eliminated in terms of the 
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scaling variable X = (&‘i)-Ei2 appropriate to the limit 0, >> 1 through the relation 

(1.9) 

Deep in the asymptotic critical regimes 2 >> 1 (0, << 1) or X >> 1 (0, >> l ) ,  by linearising 
(1.6), (1.7), (1.8) and (1.9) about the point p = 1, we obtain the expressions 

- 0  <<l  s ”= ( y  - 1) In [~ ’ /~1[1+  O(Z~’~’“ ) I ,  (1.10) 

where we have by rescaling 2, X chosen f(1) = g(1) = 0 and where y ,  U ,  w are the usual 
critical exponents associated with the Wilson-Fisher fixed point in d spatial dimensions. 
The dilute solution results obtained above were discussed in detail in I and are in full 
agreement with the expectations of Edwards (1966) and des Cloizeaux (1976); 
however, in contrast the semi-dilute expressions are derived here for the first time. For 
semi-dilute physics, we observe from (1.11) that in the asymptotic critical domain the 
logarithmic correction dominates the usual corrections to scaling -Xp(2w/e)i(”d-1), 
1 < ud < 2 .  sw have discussed the asymptotic form of S ( c p ,  o,, L) outside the dilute limit 
0, << 1; however, their approach is limited to the development of systematic corrections 
to the dilute problem for which the scaling corrections are controlled by Z (rather than 
X )  and therefore these authors fail to construct the dominant logarithmic correction 
properly for the semi-dilute limit 0, >> 1. 

By construction the function F(x ,  p )  modifies only the amplitude of the ‘singularity’ 
already present in the truncated expression ( F  = 0) for the two limits 0, << 1, 0, >> 1 of 
particular interest. Corrections of this type may to O(E’)  be eliminated by a simple 
rescaling of the primary variables 2, &, whence we shall propose the following 
phenomenological representation: 

Valid to O ( E )  for all &, 2 and specifically to O(E’)  by construction in the limits of dilute 
0, << 1 and semi-dilute 0, >> 1 physics, the representation exhibits the correct analytic 
structure in the limits (see Daoud and Jannink 1976) of particular interest, and 
therefore may realistically be extrapolated to give a description of the physics in d = 3 
dimensions. Effectively the weak remanent dependence of on the polydispersity is 
absorbed by a rescaling of f, &, so in contrast to (1.3) the parametrisation (2, &) is 
complete. 

In outline, following a brief introduction to the excluded volume problem and the 
field theoretical analogue in § 2 ,  § 3 describes the development of a series of direct 
renormalisation group equations, which are then employed in 8 4 to determine to 
scaling structure of the entropy S via that of a universal scaling function s(&, 2) of two 
parameters. We discuss the completeness and nature of the parametrisation by 
reference to the various limiting regimes of Daoud and Jannink (19761, and propose a 
phenomenological model which exhibits full universality and exhibits the correct 
analytic structure in various limits. 
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2. Entropy, excluded volume models and the field theoretical analogue 

The excluded volume model is based on a simple phenomenological short-range 
repulsion between the monomers, so that the energy E(%) of a configuration % of M 
polymers each labelled by an index m (m = 1,2 ,  . . . , M )  may be written for a system of 
continuous chains in the form 

Here the polymer m consists of L, = NmA2 'links' where A is representative of the 
inverse monomer spacing and each point on the chain is located by a vector rm(sm) 
0 < s, < N,, m = 1, 2, . . . , M. Phenomenologically, the dimensionless coupling U is 
taken to be of the form U - (1 - O/T) where O is the Flory temperature. 

Following the work of des Cloizeaux (1980), Elderfield (1980) and sw, we develop a 
grand canonical approach to the polydisperse polymer solution by defining a grand 
partition functional Z, as follows: 

i = l , 2 , .  . . , m 

where the polydispersity is defined as a continuous function of the parameter N rather 
than the link number L = N R 2  by the relation 

For this ensemble an entropy S (per unit volume) is defined by the relation 

As usual we may rewrite (2.4) and (2.5) in the familiar form 

S = E +In 2, - dx p(x)c,(x) I 
where E is the average configuration energy per unit volume 

l a  
E = -- U- In Z, v au 

(2.7) 

In the free chain limit ( U  = 0) the functional may be enumerated exactly to give the ideal 
gas expression 

S = - dx{c,(x) In [c,(x)/P'(x)]- c,(x)} (2.8) I 
where P'(x) is the number of internal degrees of freedom of a polymer chain of L = xA2  
links. We shall choose the normalisation P'(x) = 1 at U = 0 so that we compute the 
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entropy S + ( cp  In cp - c p )  relative to a gas of free chains, rather than the absolute 
entropy which is infinite for continuous chains. 

Specialising to the continuous gaussian chain model of Edwards (1966), which 
although rather crude is amply justified at least in d = 4 - E dimensions ( E  small) by the 
universality of the long chain L = NA' >> 1 limit, we may now rewrite (2.2) and (2.4) in 
terms of an effective Hamiltonian 2, 

by means of the relation 

valid for all functions f(%), which defines the Edwards model. 

(2.10) 

Here f [dr] denotes a 
I~ 

functional integration. Rewriting (2.2), we find on taking the logarithm the expression 

(2.11) 

where PM ({N,}) is the associated connected partition function for M polymers defined 
as usual by the equations 

(2.12) 

( h ( N )  is not associated with vertex irreducibility in the sense of des Cloizeaux (1980).) 
For our purposes, the particular value of (2.11) lies in the existence of a simple 

isomorphism between the functions PM ({Ni}) and the connected Green functions 
(taken at zero momentum) of the following field theory: 

M 

H({+I)=+ 2 i: (v+ia)'+acA*(+ia)*++ f i: ta(+ia)' 
a = l  i = l  a = l  i = l  

(2.13) 

Here +ia is an II X m component field for which the fluctuations are cut off at a 
momentum scale A, reflecting the finite monomer size, and the + 4  coupling arises 
directly from the excluded volume interaction. Extending the work of Emery (1975), 
one may easily show that 

GZM(t l , .  . . , f M ) =  dNi exp[-Ni(a,R2+ti)PM({Ni})] (2.14) 

where G Z M ( t l , .  . . , fM) is the connected Green function defined in terms of the field 
theoretical free energy In ZF taken in the limit n -+ 0: 

(2.15) 
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To illustrate the power of the analogy (2.14), it is useful to examine the structure of the 
entropy for a dilute (or single polymer) problem which may be defined directly in terms 
of P ' ( N )  by the relation 

(2.16) 

(see I). Equation (2.14) relates the polymer limit L = N A 2  >> 1 to the approach of the 
ferromagnetic transition in the analogue field theory, for choosing a, (U) such that 
t = 0 ( M  = 1) locates the transition, it is well known that the susceptibility x is of the 
form 

which implies that the entropy S' (2.16) scales as follows: 

(2.17) 

(2.18) 

Here y, o > 0 are critical exponents associated with the n + 0 Wilson-Fisher fixed point 
of the renormalisation group, whilst a,(u),  4 ( u )  are non-universal functions of the 
coupling U which depend strongly on the small length scale details of the underlying 
chain, hindered rotation, etc. More generally, outside the asymptotic domain L >> 1 we 
would expect S' to depend strongly on the dimensionless combination 2 - u L " ~ .  
Indeed, if 2<< 1, perturbation theory is valid and we find directly that the entropy 
exhibits random flight (7 = 1) behaviour 

S' = (a ,  - da,/a In U ) L  + O ( z ) .  (2.19) 

In I we showed by means of a series of direct renormalisation group equations 
developed from the field theory that we can describe the scaling properties of S as a 
function of L, U in terms of a universal scaling function m(L) of a parameter I: 
(proportional to L )  which is a common feature of all polymer functions: 

S ' - A L - B  = ~(2) (m(0)  = 0) .  (2.20) 

For example, the parameter 2 may be eliminated directly in terms of the expansion 
factor cy = (R *)/(R*), = ~(2) which is also a universal function of 2. The function m(L) 
was constructed in terms of an elegant parametric representation, which to order E *  in 
the F expansion takes the form 

m(L  or cy)  = (5) In( 1 - p )  - (1 + g) ( 1 + 6 (13 - 1 6 ~ ) )  (2.21) 

where p may be eliminated in terms of or cy from the relations 

Cr=(1- -p)-""p = LE'*. (2.22) 

Here x is the Euler number: x = 0.5771 . . . . The non-universal structure of S' appears 
only in the functions A, B, L /L  which, determined by the short-range correlations and 
independent of L, are of little intrinsic interest. The analogy thus allows us to describe 
in precise detail the nature of the crossover from free flight (2.19) to swelled chain (2.18) 
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behaviour as important long-range correlations develop, and identify in a simple way 
the degree to which the polymer system exhibits universal characteristics. 

We shall here extend these w t h o d s  to show that more generally the scaling 
properties of the entropy S(c, ,  o,, L)  of a polydisperse solution may be described in 
terms of a universal scaling function S ( i ,  G,), 

c , S - S - ( A L + B ) c , + ( [  dxc,(x) In c , ( x ) - c p ( x } ) ,  (2.23) 

of the scaling variables 5 = La/', 2 = (&/i)-'". Constructing S,  we find to O(E' )  the 
expression 

(2.24) 

where the parameter p e [ O ,  11 may be eliminated in terms of L and Cu through the 
relation 

(1 - p ) - E / 2 w p  = ~ ' / 2 [ 1 + 0 " , ( 1 - p ) ( 2 - u d ) / w ] - E / 2  (2.25) 

and the function F ( x , p )  (an O(E* )  effect) depends on the nature of the reduced 
distribution P ( x )  (1.1). The primary limitation of (2.24) is the function F(x,  p )  which 
must generally be constructed numerically; however, in the limits of dilute 0, << 1 and 
semi-dilute 0, >> 1 physics which are of principal interest, we may set F = 0 by choosing 
the scales suitably, i.e. 

p u  "(0 ,  p )  = p u  * lim = 0(&3) .  
x+m X 

(2.26) 

Strictly S is therefore only fully universal as a function of i, in the limits 0, << 1,0, >> 1 
where F(x,  p )  and the associated polydispersity effects can be suppressed. 

Guided by the feature (2.26) of the full representation (2.24), which is readily 
extendable at least formally to any desired accuracy, we shall argue that the truncated 
expression 

S =  [(l-y)/w] I n ( l - p ) - ~ o " u ( 1 - p ) ' 2 - u d " "  (2.27) 

provides a useful phenomenological description of the physics throughout the 
parameter space spanned by L, & 3 0. In contrast to (2.24), the two-parameter 
description is complete for (2.27) so that, having fixed the scales L, 6,, no further 
freedom exists. To O ( E )  the two representations (2.24) and (2.27) are fully equivalent, 
whilst by construction in the domains of dilute and semi-dilute physics, we may extend 
this equivalence to O(E' ) ;  cf (2.26). 

For practical purposes we shall in general be interested in a phenomenological 
representation of the entropy S(cpz. L, 7') as a function of cp, L and the temperature T 
rather than the variables & and L employed above. We therefore extend the usual 
phenomenological choice U - 1 - O/T, where 8 is the Flory temperature associated with 
the structure of the perturbative domain U << 1, by defining 

L E / 2  = ~ ( i  - 8 / T ) L E I 2  = ab(1- B/T)L2cp, 

where a, b independent of cp, L, T are to be obtainedfrom experiment ((4.19) etseq.). It 
is important to observe that through (2.25) the trajectories p(c,, L, T = 1 - 8 / T )  exhibit 
scaling behaviour as a function of a single crossover variable Z = LEI2 or P = (6,/L)-"' 
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only in the dilute or semi-dilute limits. Indeed, in general, as the temperature increases 
from 0 at fixed L, cp it is theoretically possible to probe in s-quence all four (T  > 0) 
regions of a Daoud and Jannink (1976) type plot, as illustrated in figure 1. 

CP 

Figure 1. Regions of a Daoud-Jannink type plot. A: Dilute critical; f >> 1, 0, << 1. B: Dilute 
8 (tricritical); 2, 0, << 1. C: Semi-dilute 8 (tricritical); X<< 1, 0, >> 1. D: Semi-dilute critical; 
X >> 1, 0, >> 1. The curves are: (1) T(TLc,)-"* = constant; (2) TL"* =constant; (3) 0, - 
TL'c, = constant - I .  

3. The renormalisation group in d = 4- E dimensions 

To investigate the scaling properties of the entropy S(c,, ov, L)  (2.4) for arbitrary 
polydispersity we employ the techniques of BrCzin et a1 (1976; BLZ) to develop 
renormalisation group equations via the properties of the connected polymer functions 
P M ( N 1 ,  . . . , N,) (2.11) and their field theoretical analogues G2"(tl, . . . , t M )  (2.15) (cf 
(2.14)). Following BLZ, we shall factor out the non-universal features of the entropy by 
constructing a renormalised theory depending on a new length scale << A and new 
parameters U ,  Ne. By direct analogy (see I) with the field theoretical development, we 
define renormalised polymer functions P M ( { N } ,  U ,  A) by the relations 

P M  ({NI, U ,  li) = z ;"PM ( { N I ,  u, A) exp (- a, 

z,U = u(A/A)'z;, 

z+Na = z,N,, a = 1 , 2  , . . . ,  M, (3.1) 

M 
L,) , 

a = l  

where La is the link number of the CY polymer L, = NaA2,  CY = 1 , 2 , .  . . , M, and the 
functions a , ( u , A ) ,  z+(u),  z , (u) ,  z ,(u) are chosen to ensure that the renormalised 
functions P" are finite in the limit A -+ CO at fixed a, N,, (Y = 1, 2, . . . , M. Perturbatively 
in U ,  a,(u, A) renders P finite in d < 4 dimensions and then z+, z,, z, (independent of 
{N,} by construction) remove the remaining logarithmic divergences as d -+ 4. In the 
field theoretic representation these equations correspond directly to the renor- 
malisation scheme of BLZ, i.e. 

G2"({t), ii, A) = ziMG2M({t} ,  U, A), 

z,ii = u(A/A)"z:, 
(3.2) 



Scaling properties of entropy of polymer solutions 3375 

so we refer the reader to BLZ (or I) for a detailed discussion of the construction of 
z,, zt, z+. Naturally we could implement (3.1) from first principles without reference to 
the field theory; however, the functions z,, z+, zt are known (up to an irrelevant finite 
renormalisation) to at least O(zi4) in the literature, so this exercise is pointless. 

In terms of these renormalised functions PM({x}) we may now rewrite the free 
energy functional of fugacities h (x) t, 

m M  

V M = l  i = l  

1 
-1n Z, = 1 n dxi h(xi)PM({xi}, U, A), 

in the form 
m M  

V M = l  i = l  

1 
- In 2, = 1 n dxi K(xi)PM({xi}, zi, A). 

(3.3) 

(3.4) 

Here the renormalised/bare fugacities are related as follows: 

h(xzJz+) = z+h(x) exp[a,(xA2)]. (3.5) 

The fundamental renormalisation group equations may now be derived directly 
from the above by observing (BLZ) that the bare functions P'({N}, U, A) are certainly 
independent of the arbitrary length scale A, so by implication 

where the functions P(zZ), y(zi), v(U) are defined as follows: 

= -$( 1 + 4 2 )  + &zi2 + o( ii3) (independent of a) 

The expressions for P ( U ) ,  v(zi), ~ ( z i )  enumerated above were computed for a dimen- 
sionally regularised C # J ~  theory and are correct to order E' in the E expansion (zi = O(E) ,  
d = 4- E).  As usual, a factor of S i 1  = 2d-17rd'2r(d/2) has been absorbed into the 
coupling zi. The importance of (3.6) lies in the simple structure of P ( f i ) ,  ~ ( a ) ,  ~ ( z i ) ,  for 
by construction they are independent of {N} and furthermore independent of A. 
Naturally, outside the dimensional regularisation scheme employed here, there will be 
corrections of order A/A to (3.7); however, in the polymer domain N A 2  >> 1 we may 
always choose A<< A Strictly, the functions P ( i i ) ,  y ( i i ) ,  v(C) are only universal at the 
fixed point U* defined as usual by P ( u * )  = 0; however, this remanent dependence on 
short-range details may always be absorbed by a further rescaling of the primary 
variables E, {Ne} so that (3.6) is indeed an adequate description of the universal scaling 
structure expected. 

i Here y = x A z  rather than x is related to the number of links per chain. 
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To derive the renormalisation group equation for In 2, from (3.4) and (3.6), we 
need the following identity (integration by parts), 

valid for polydispersities c,(x) vanishing sufficiently fast in the limits x + 0 or W. Using 
(3.8), (3.4) and (3.6), we now find after some manipulation the renormalisation group 
equation for In Z,, 

where ~ ( i i )  is given in terms of v ( i i ) ,  y(G) by the relation 

Y(4 = v(ii)(2- T ( 4 )  (3.10) 

and by definition cp = 5 dx C p ( x )  = (1/V) 5 dx a In &/a In 6(x) (cf (2.3)). Of course only 
the total concentration c, = 5 dx c,(x) is invariant under our renormalisation prescrip- 
tion (3.5). For example, the renormalised/bare polymer concentrations are related as 
follows, 

(3.11) 

leading to the invariance cp = dx c,(x) = 5 dx C p ( x )  of the total concentration. 
For our purposes it is however useful to have a renormalisation group equation in 

which the polymer concentration C,(x) is an explicit scaling variable so we define the 
Legendre transform In 8, of In 2, with respect to C,(x), i.e. 

E,(x) = a  In ~ , / a  In &(x) = (z+/z~)c,(xz+/z~), 

I 1 -  1 
-In E, = - In 2, - 
V V dx E,(x)@(x) 

where 

or equivalently 

(3.12) 

Here @ (x) is the renormalised chemical potential @ (x) = In 6(x). Observing that the 
properties of Legendre transformations (3.12) ensure that ;ia In Z,/aA = ;ia In E p / d i  
etc, we may therefore trivially rewrite (3.9) after integration by parts in the final form 

a { 5 + P (fi) $ - (&- 2) I dx [ ( 1 + x dX ”) C p ( x ) ]  s} In g p  + 77 (ii)c, = 0. 

(3.13) 

Again we assume that the polydispersity Cp(x) vanishes sufficiently fast in the limits 
x + O o r m .  

Returning now to the primary definition (2.4) and (2.6), the reader will see that we 
now have a direct renormalisation group equation for the difference S - E ,  so to 
complete our task we need only develop a similar equation for the configurational 
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energy E. By contrast to our above considerations the examination of E is rather 
complicated. We first parametrise E in terms of fully renormalised functions X = 
( l /V)d In Z,/d In U, C,(x) and non-universal amplitudes A(u),  B(x,  U )  as follows: 

= A X  - dx B(x)EP(x) (3.14) I ff 
E = -U - In Z, 

all { h ( x j }  

where 

A=-alni i /a ln  U, 

B E  

(cf (3.5)). Outside the dimensional regularisation scheme employed here (cf (3.6) et 
seq.) there will in general be corrections of O(A/A) to (3.14). However, in the critical 
domain L >> 1 etc these non-universal terms may be suppressed by choosing A<< A 
(A finite). The non-universal components A,  a In z,/a In U, a In (z+/z,)/a In U are 
intimately related to the renormalisation group functions p ( f i ) ,  -y(ii), v ( f i )  (or ~ ( f i ) ,  cf 
(3.10)) as follows: 

A = P(i i ) / f ie ,  

(3.15) 

for in a dimensional regularisation scheme the functions z+, zt, tu depend solely on the 
dimensionless variable U (A/&)E. Again, for other regularisations these relations may 
be modified by small terms of O(A/A) which can again be ignored. Following I, we find 
it useful to rewrite (3.14) in terms of a subtracted energy E,  

(3.16) 

where X and Y = (1/V) dx[(l + x a / d x ) f p ( x ) ] d  In z:,/aC,(x) can be expected to satisfy 
exact renormalisation group equations similar to (3.13). Here L is the average number 
of links per polymer, defined by the relation L = N A 2  where NC, = dx x c p ( x ) .  Without 
loss of generality we may set A = 1, so in § 4, in order to simplify the discussion, we shall 
not distinguish between L = N A 2  and N. 

Operating now on (3.13) with f ialaf i  and j dx[(l+ x a / a x ) c p ( x ) ] a / a c , ( x ) ,  we find the 
required renormalisation group equations for X,  Y in the form 

(3.17) 

To display the scaling structure of the entropy S(c,, L, 0,) we must now solve the 
above renormalisation group equation ((3.13), (3.16), (3.17)). As usual we shall 
employ the method of characteristics. Defining functions C(A), Cp(x, A ) ,  K ( A )  of a scale 
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parameter A as follows, 

@ A )  = AX, 
dii(A)/d In A = P[ii(A)], X( 1) = X, ii(1) = a, (3.18) 

(3.19) 

allows us to rewrite the renormalisation group equations in the integrable forms 

1 - 
- d In Zp/d In A + v(ii)Ep(A) = 0 ,  
V 

dY(A)/d In A = 0, (3.20) 

(d/d In A )  [ X - (: - 2) Y + qc,] = 0. 

The trajectory equation for Ep(x, A )  is however unnecessarily complicated, for if we 
introduce the reduced distribution P(x)  

cp = cp ( l /N)P(x/N)  (3.21) 

we may rewrite (3.19) in terms of a function Ep(x, N(A)) where N(A) satisfies the 
differential equation 

(3.22) 

For arbitrary C,(x) we shall define N such that N = dx xP(x), i.e. 1 = N X 2  (propor- 
tional to L, cf (1.3)) plays the role of the average link number per polymer in the 
renormalised system. 

In this form the equations (3.20) may be formally integrated as functions of U ( A ) ,  
N(A), X(A) to give the solutions 

d In N(A)/d In A = (l/v(ii)-2), N(1) = N. 

and 

P ( 4  
- x ( cp, ii, N, X) 

ii 

(3.23) 

(3.24) 

(3.25) 

More usefully, we may reformulate (3.24) and (3.25) into the following scaling 
relationship for the subtracted energy (3.16): 

(3.26) 

The reader will observe that the total concentration cp of polymers is invariant under 
the above renormalisation group transformation, a feature which simplifies consider- 
ably a discussion of the renormalisation group trajectories in the physical parameter 
space. Also we should emphasise again that whilst (3.23), (3.24) and (3.25) are exact in 

E(cp, U, N, A) = E ( c p ,  U ( A ) ,  N(A), AA). 



Scaling properties of entropy of polymer solutions 3379 

the context of an E expansion, the expression (3.26) will in contrast be modified by 
uninteresting non-universal corrections O(A/A) (A finite) if we do not employ a 
dimensional regularisation (cf (3.14) et seq.). 

To construct now the scaling relation for the entropy, we first observe that the 
equations (2.6), (3.5), (3.12) and (3.16) imply 

S = cp[(ac - aac/d In U ) L  - In z+] + E  + (1 / V )  In gP (3.27) 

where E, In g p  satisfy simple scaling relations in contrast to the bracketed term which is 
non-universal. For our purposes we are particularly interested in the structure of the 
subtracted entropy 

c p s  = S - c p [  (a ,  -%)L + In z+] + (I dx Fp(x)  In Zp(x)  - C p ( x )  
dln U (3.28) 

which both transforms simply under the renormalisation group and furthermore can be 
expected to depend only weakly on the polydispersity (cf (2.7), U = 0). Using (3.23), 
(3.26) and the additional relations 

(1 dx C p ( x )  In N C p ( x )  i.e. (ep In NcP) invariant, 

(3.29) 
d In A 

cf (3.21), -- 

we find that scales as follows under the renormalisation group: 

(3.30) 

This final relation is fundamental to the following discussion, for by a careful choice of 
the free parameter A we show that the entropy S exhibits the properties of scaling and 
universality through the scaling function S. As expected, we find that the universal 
structure of S is not drastically modified by the polydispersity. 

4. The universal crossover scaling function S 

To exhibit the scaling structure of s we shall use the freedom in the scale parameter A, 

As usual we seek a value for A such that S(A) may realistically be evaluated perturb- 
atively with the usual loop expansion. In contrast to I, the situation is rather compli- 
cated, for the scaling structure is described in terms of two competing scales L, o,/L. 
The scaling structure of s is dominated by L in the dilute regime (0, << 1); then, as the 
‘overlap’ 0, - uL2cp grows, the scale o,/L becomes more important until finally in the 
semi-dilute regime (0, >> 1) the physics is controlled solely by the scale o,/L (propor- 
tional to the average monomer concentration c, - Ncp).  

For a suitable choice of A we shall construct $(A) in terms of the vertex irreducible 
expansion of des Cloizeaux (1980) (sw). Following this author, we find that the 
thermodynamic functions of primary interest may be described in terms of a vertex 
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irreducible functional V({g(x)}) which to one-'loop accuracy takes the form (A = 1 
without loss of generality, i.e. L = N )  

V({g(x)})=j dxg(x)+: j  dkd{$j dxg(x)x 

1 [ "3"I k 
-In 1+- d x 7  x - ~ ( l - e -  

where g(x) is related to bare fugacity h(x) (3.3) by the exact relation 

h(x) =exp p (x )  = g(x) exp(-a,x +$uLc,x). (4.3) 

Of fundamental importance are the connection formulae from which c,(x), In 2, may 
be derived as functionals of g(x); they are 

(4.4) 

(4.5) 

Here c,, U, N are bare parameters associated with the unrenormalised theory described 
by a reduced polydispersity P(x) which must be eliminated in terms of the renormalised 
parameters Cp, U, N, (3.1), (3.11), and polydispersity P(x), (3.10), before (4.1) is 
implemented. 

Manipulating (4.2), (4.3) and (4.4), we find after some rescaling that In Z,, and ( p )  
may be expressed conveniently in terms of two dimensionless parameters z = uL"~ and 
o, = uL2c, (A = 1 without loss of generality, i.e. L = N )  as follows: 

1 +io, +;z I dkd[ 
V 

(4.6) 

where f(k)  = $(1- (1/k2)(1 - p ( k 2 ) )  and L = N ( A  = 1). Here p(x)  is the Laplace trans- 
form of the reduced distribution P(x),  (4.5): 

00 

p(x) = Io dy e-YxP(x). (4.7) 

Similarly we find that the average interaction energy E (cf (2.7), (4.6) and (4.7)) is of the 
general form 

=-$c,[?+z[ d k d ( l -  3 k 2  (kZ+o,f(k)) (4.8) 

Here (1/V) In Z, = (1/V) In 2, - 5  dx p(x)c,(x) is the Legendre transformation - of 
In 2, with respect to the unrenormalised concentration c,(x) (In Z p  #In S,, cf (3.12)). 
Returning now to the primary definition (2.6) for the entropy, we obtain from (3.11), 
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(3.28), (4.6) and (4.8) the following expression for s in terms of the bare parameters 
2, 0,: 

f (k)  ] + 2 loops. [ b" :z I dkd; ln (1 + 0, F )  - k 2 +  o,f(k) (4.9) 
s = - -  +- 1 '  f (k)  

If we now define renormalised parameters O,, Z (cf (3.1), (3.11), (3.20)) 

SdGU = iiA"N2~, = o,[ 1 - ( 4 6 / 3 ~ ) (  1 ++E) + O( U')], 
s - _ -  (4.10) 

d z  - U (N A') 'I' = 2 [ 1 + i n  + 0 ( fi ')I, 
related as shown to the bare parameters o,, z through the functions z+, z,, z ,  tabulated 
by BLZ to O(x4), we find that we may rewrite (4.9) in the form 

dkd 1 ovf (k 1 +- 1-- --ln l + ~  - 
2 '( 2[j Sd 0, ( k ) (k*+&f(k)) 

(4.11) 

to which the scaling relation (4.1) applies. Although all terms of O(E') have been 
dropped, the expression (4.11) controls the behaviour of Sthrough (4.1) to O(E')  in the 
E expansion; for these terms are of the same magnitude as the O ( E ~ )  corrections to the 
trajectory equation ((3.18), (3.21)) solutions we employ (see I). 

To fix the value of A,  (4.1), we shall demand that the loop corrections do not 
significantly modify the behaviour of the mean field theory expression evaluated at the 
scale A. In order to choose a suitable A, we observe that in dilute o, << 1 and semi-dilute 
o, >> 1 regimes which are of particular interest, the behaviour of the one-loop correction 

dkd  1 1+6,f(k) s = z  -- ' - -I  Sd &,[In(  k' )-k'+o,f(k) 
(4.12) 

may be characterised very simply. For the dilute limit o, << 1 we may expand systema- 
tically in 0, to give the virial expression 

S' - Z [ l +  0(6,)], 6,K 1, 

which as the overlap o, increases is smoothly modified until asymptotically semi-dilute 
behaviour is observed?, 

5 6, >> 1. SI- f ( ~ , ) ( d - 2 ) / 2  

If therefore we fix A by demanding that the parameters Z(A) = Z ( i i ( A ) ,  N(A), AA) and 
&(A) satisfy the matching condition 

n(A) = Z(A)[1 +5,(A)]-"', (4.13) 

we find that $'(A) only modifies the 'amplitude' of the terms present at the mean field 
level of approximation (no loops), and furthermore vanishes under 8 temperature 
conditions ii = 0 (all o,, L). 

To appreciate the full significance of the matching constraint (4.13), we must 
evaluate the behaviour of s(c,, U, I?, A) through (4.1) and the trajectory equations 
(3.18) and (3.21). Integrating the trajectory equations subject to  (4.13), we find 

t For 0, >> 1 large momenta dominate the integration, and most generally f(k) -.$ as k -.CO. 
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through (4.1) that S(c,, ii, N, A )  may be written in the parametric form 

where p = C(A)/u  * E [0, 11 may be eliminated through the constraint equation 

dx ( 2 -  v ( x ) d ) ) ] - ' .  

(4.14) 

(4.15) 

Here the rescaled parameters - 1 = ( N X 2 )  are designed to absorb the 
non-universal effects of the crossover from e temperature to critical conditions as the 
parameter p runs from zero to one. Explicitly, we have defined 

- o,, 

and absorbed a further non-universal factor into s, i.e. 

The universal function pF(x ,  p )  which we have isolated in (4.14) summarises the effect 
of the loop corrections at the scale A and is of the form 

pF(x,p)=;p(l-$)(l+x)"' 

+ ( 4 / 3 ~ ) x p ( l + $ ~ ) + 2  loops, (4.17) 

where x is related to 6, through the trajectory relation 

(4.18) 

As usual, the scale of p is fixed by the non-trivial fixed point of the renormalisation 
group equations @(U*) = 0, @'(U*) > 0; the Wilson-Fisher fixed point U *  = 

At first sight the representation (4.14), (4.15), (4.17) is rather unwieldy; however, 
two special features we have incorporated lead to particularly simple expressions in the 
physical domains of dominant interest, i.e. dilute 0, << 1, semi-dilute 0, >> 1 and e 
temperature or free chain (all 0,) limits. We first observe that we may identify the point 
p = 0 with 8 temperature conditions, for in this limit 

aE(l+&ZE+O(E2)). 

S(cp, 1, o,, A) = -iou + O(p)  (4.19) 

where the small term of order p corresponds through (4.15) to the usual perturbative 
corrections to the e temperature (U << 1) state. Explicitly integrating (4.15) for p << 1 (cf 
(3.7)), we obtain the expression 

p = p ( ( 1  + ; u ) - & / 2  

which reduces in the dilute region to p - Z E / '  and in the semi-dilute domain to 
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p - (L/6,)'/', Now conventionally the 8 temperature regime is parametrised in terms 
of z = uLE/' (dilute solutions 0, << 1) or x = u(uLc,)-"" (semi-dilute domain 0, >> 1) 
where phenomenologically the choice U - 1 - B/T is made. Here 8 is the Flory 
temperature. For our purposes, however, we find on examining the defining equations 
for 2, 6, that for U << 1 

whence within our representation S(&, 2) we naturally extend this phenomenology to 
the entire physical domain by defining 

= gZ/'L, 6, = gfL2c,, (4.20) 

where the functions g(T) ,  f(T) satisfy the constraints g - 1 - B/T and f -  constant for 
8 -  T. Of course, to fit S to experimental data we would take the simplest 
parametrisation 

g = a(1- B/T), f =  b, 
where a, b are constants (independent of cp, L, T ) ,  although strictly this choice lies 
outside the initial parametrisation in terms of U defined by the model (cf (4.16)). In 
contrast, for the limit p + 1, we observe asymptotic scaling behaviour through either the 
scaling variable f = LEI2 or f = (6,/L)-"' depending on the magnitude of the overlap 
0,. Linearising (4.15) about p = 1, we find as expected that p is driven to its fixed point 
through the relation 

(4.21) 

which reduces to the familiar expressions (1 - p )  - L?, 0, << 1, or (1 - p )  - 
( G , / f ) w / ( U d - l )  , 0, >> 1, in the limits of dilute and semi-dilute physics. The form of is 
also more complicated, for F(x ,  p )  takes a simple form only in the limits x - 0, << 1 or 
x - 0, >> 1. For dilute solutions we find (see (4.12) etseq.) by linearisation that s is of the 
form 

(4.22) 

where g ( p )  = -U "pF(0,  p )  may be developed as a power series in p ( g ( 0 )  = 0) and p may 
be determined through (4.21), i.e. (1 - p )  = LVw[l + O(L"-", ;,)I. On the other hand, in 
the semi-dilute regime 0, >> 1 we find (see (4.12) et seq.) that S reduces to the form 

S={[(1-y) /o]1n(l-p)-%6,(1-p) '~-~~)/~ (1 +f(p))Hl+ 0(1/0,)) (4.23) 

where if@) = lim,,,(pu*/x)F(x, p )  may again be developed as a power series in 
p(f(0) = 0). Here p is to be eliminated through the relation (1 - p )  = (6,/2)o/(1-ud) 
(4.21). As p + 1 we therefore obtain the scaling behaviour 

(4.24) 

(l-p)-l/- - i/( 1 + 6, (1 - p) (2 -vd ) /w)  

S =  {[(I - y) /oI  In (1 - p )  + g(p)Nl+ O(6,)) 

S =  [ ( y  - 1) In f2 / "  + g( l ) ] ( l+  ~ ( o , ,  T ' ~ / ~ ) ,  

s = [ ( y  - 1) In f ( Z / E ) [ 1 / ( L ' d - 1 ) 1  

in terms of the crossover scaling variables f = 2"' or f = (6 , / i ) -" /2  depending on the 
magnitude of the overlap 0,. In I the result (4.24) was discussed in some detail, so we 
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shall restrict our attention to the new result (4.25). sw have also discussed the 
asymptotic structure of S throughout the physical domain; however, their approach 
fails to generate the dominant logarithmic correction (1 < vd < 2) which must be 
distinguished from the usual exponentiated correction to scaling - X - ( 2 / E j / ( " d  - ' j .  

Effectively the work of these authors is restricted to the evaluation of systematic 
corrections to the dilute problem for which the corrections to scaling are always 
controlled by f=LE'2. The parameters i, 6, will be a common feature of most 
thermodynamic functions (see I), so the reduced entropy s will exhibit full universality; 
a considerable improvement on the work of sw. 

Overall we see that the matching condition (4.13) and the absorption of the 
non-universal elements (4.16) lead to simple expressions in the domains of particular 
interest, despite the unwieldy form of (4.14) for general values of the overlap parameter 
0,. To simplify the representation further we may employ the freedom in the matching 
condition by demanding that instead 

1 = aL/[l+ abo,(h)] (4.26) 

where a, b independent of L, cp can be freely chosen. Of course, order by order in E ,  the 
representation ((4.14) et seq.) is invariant under this rescaling; however, there is a 
certain ambiguity in the continuation to d = 3 which we can exploit. For example, in the 
dilute regime U, << 1 we find (see I) that to O ( E ~ )  the reduced entropy s is of the form 

(4.27) s = [(l- y)/w] ln(1 - p )  + g ( p )  +A(ln a ) p  + O ( E ~ )  

where p may be obtained from the relation 

(1 - p ) - " / 2 " p  = f a " / 2  (4.28) 

and A(&) is independent of U, cp, E. From I we know that g ( p )  is of the form 

g ( p )  = -@U * / 3 ~ ) (  1 + ; E ) (  1 + i p ~  *(13 - 1 6 ~ ) )  (4.29) 

where x is the Euler number: x = 0.5771 . . . . Now we are perfectly free to choose 'a '  
such that it cancels the effect of g ( p )  to give the representation 

s = [(I - y ) / w ]  In(1 - ~ ) + o ( E ~ )  (4.30) 

where p is now determined from the relation valid to 

(1 -p-'l2"p = f exp[-u*/6A(~)]- f. (4.31) 

In I this choice was not made, for we wish to fix the scale consistently in both s and the 
expansion factor a = (R2) / (R2)o .  By the same mechanism we can also choose b such 
that f(p) = 0 to O ( E ~ )  in the semi-dilute limit 0, >> 1, for the loop correction again only 
modifies the amplitude of the leading term (4.25). 

Phenomenologically we are therefore led to consider the truncated representation 

(4.32) 

which describes the entire domain lf, 6, t 0 correctly to O ( E )  (see comments following 
(4.1 l)), whilst in the regions of dilute U, << 1 or semi-dilute 0, >> 1 physics of primary 
interest the error is only O ( E ~ ) .  In contrast to the exact representation (4.14), the 
two-parameter description is complete for (4.32), for we have effectively absorbed the 
remanent dependence on the polydispersity exhibited by F(x,  p )  into a simple rescaling 

S = [( 1 - y ) / w ]  ln(1 - p )  - &,( 1 -p) '2 -Yd) /W 
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of the variables 6, f,? Readers familiar with the field theoretical approach to polymer 
physics will observe that we could in principle identify Goldstone type terms in F(x,  p )  
which are not controlled by the E expansion (see sw); however, for s the effects are 
weak and cannot be separated from the inherent ambiguities associated with the 
continuation of our results to d = 3. 

5. Discussion 

Using a series of direct renormalisation group equations, we have shown that the 
entropy S(c,, L, o,, {P(x)}) of a polymer solution with specified polydispersity c,(x) = 
c,(l/L)P(x/L) may usefully be discussed in terms of a universal scaling function 
S(G”, 0, 

c,S= S- (AL+B)c ,+( [  dxc,(x) ln[c,(x)]-c,(x)), (5.1) 

which depending only weakly on the polydispersity may otherwise be parametrised 
completely in terms of a renormalised average link number f per polymer and overlap 
&. Here A, B, 6,/0,, i / L  are strongly model-dependent (non-universal) and 
independent of c,, L and therefore of little interest. Extending the approach of I we 
have developed a compact parametric description of s valid for all 2, o“,> 0 which 
describes the scaling properties of the entropy. In its most general form we may 
represent S by the parametric equation 

where p E [0, 11 is to be eliminated in terms of the renormalised polymer length f - L 
and renormalised overlap 6, - 0, = uL2cp through the relation 

and the function F(x,  p )  is a smooth function of x, p (see (4.17)) which can be 
constructed perturbatively in pu* for the limits of dilute 0, << 1 or semi-dilute 0, >> 1 
physics which are of primary interest. Unfortunately the function F(x, p ) ,  which in the 
context of a E expansion is an O(E’)  effect, must in general be computed numerically. 
The functions p(x), v(x), y(x) are intimately related to the critical exponents as usual 
(BLZ): 

Y = Y ( U * ) ,  v = v(u*), w = $’(U*), (5.4) 

where U * is the Wilson-Fisher fixed point of the renormalisation group equations; 

For practical purposes we require a parametrisation for S as a function of cp, L and 
the reduced temperature T = 1 - 6 /T  where 6 is the Flory temperature rather than the 

U * = : E (  1 + && + O ( E 2 ) ) .  

t Strictly F ( x ,  p )  will be modified by terms from the trajectory integrals evaluated to O(E’)  in the E expansion; 
however, such modifications are unimportant to the general argument. 
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variables 2, 6, employed above. We have therefore extended the usual phenomenolo- 
gical choice U - 1 - B/T associated with the structure of the perturbative U << 1 domain 
by defining 

U ( I  - e/T)LEl2, 6, = &(I  - e/T)L2cP, (5.5) 242 = 

where a, b independent of cp, L, 7 are to be obtained from experiment (see (4.19) 
et seq.). 

Carrying through the programme outlined above to O(E ' )  in the E expansion, we 
obtain the following representation for a dimensionally regularised system: 

S =  [(1-y)/w]In(I-p)-bo,(1-p)(~-"~'/"- pu  *F(0 ,  (1 - p y -  u d ) / w  I P I .  (5.6) 

The parameter p is to be eliminated in terms of 2, 6, or cp, L, 7 (5.5) through the 
relation 

(5.7) (1 - p ) - & / 2 m p  = z~/2[1 + 0,(1 - p ) ( 2 - v d ) / w ] - ~ / 2 ,  

Here y, v, w are the critical exponents defined by (5.4) and the function F is given for 
arbitrary specified polydispersity by equation (4.17) where we can ignore the two-loop 
corrections, for through the trajectory equations (see I, and remarks following (4.11)) 
these terms are effectively of O ( E ~ )  in the E expansion. Through (5.1), (5.6), (5.7) we 
have a complete description of the scaling properties of the entropy S throughout the 
parameter space, 2, o , a O  or cp, L, 7 2 0  to order in the E expansion, although in 
general the function F(x ,  p )  must be evaluated numerically. Apparently only the 
exponential polydispersity P ( x )  = e-' is susceptible to analytic tekhniques, and we 
obtain for this case the expression 

F ( x ,  p )  = ( 1 / 4 ~ ) (  1 - i p ~  *)( 1 + x)"'{( l / x ) [ l -  (1 + $ . x ) ~ ~ ~ ' ~ ]  

x (1 + E/4) + +(1+ ;x, + (4/3&)x(1+ 4 2 ) .  (5.8) 
By construction, however, in the domains of dilute 0, << 1 and semi-dilute 0, >> 1 physics 

where the functions g ( p ) ,  f(p) may be constructed perturbative in pu* (f(O), g(0) = 0), 
whence for the limits of particular practical interest F only modifies the amplitude of the 
leading term. For dilute solutions we recover for 0, << 1 the results of I which describe 
the crossover from random flight to self-avoiding behaviour as the parameter 2 - u L " / ~  
increases. In contrast, for 0, >> 1 we obtain the new result 

which in the asymptotic critical regime ff >> 1 reduces to the form (after rescaling) 

We may usefully compare (5.11) with the asymptotic analysis of sw which is valid 
outside the dilute polymer regime 0, << 1. The approach of these authors is somewhat 
misleading, for in developing systematic corrections to the dilute expression, the 
corrections to scaling are controlled by Z rather than P as required for semi-dilute 
physics, 0, >> 1, so that in particular the dominant logarithmic correction 1 < vd < 2 is 
not properly identified. 
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Of course the primary limitation of the above representation is that F will generally 
need to be computed numerically for each polydispersity P ( x ) ;  however, to O(E ') at 
least the effect of F may be minimised by using the inherent ambiguity in any 
continuation to d = 3 dimensions. Choosing the scales L, 6, suitably, we may for 
arbitrary polydispersity effectively absorb F completely in the limits of dilute or 
semi-dilute physics, i.e. 

(5.13) 

which exhibits full universality as a function of L, 6, as a phenomenological description 
of the entire parameter space 2,;" t 0 or cp, L, 7 2 0. Valid to O ( E )  for all L, GU and 
specifically to O(E') by construction in the limits 0, << 1 or 0, >> 1, the expression (5.13) 
exhibits the 'correct' analytic structure in the various limits of particular interest, and 
therefore may realistically be extrapolated to give a description of the physics in d = 3 
dimensions. In contrast to the exact (to O(E' ) )  representation (5.6),  (5.7), the two- 
parameter 2,6, description is complete, for we have effectively absorbed the remanent 
dependence on the polydispersity exhibited by S through F by a simple rescaling of 
these variables. Physically the expression (5.13) is very appealing, for we observe that 
as the 'overlap' 0, increases the structure will change qualitatively from dilute to 
semi-dilute physics when 

(5.14) 

which locates the point at which extra (rather than intra) polymer contacts begin to 
dominate. Here we have taken the dilute critical form for the trajectory p(c,, L, 0,) and 
defined g = A2((R2)) -d /2  (independent of L for 0, << 1) where A2 is the second virial 
coefficient (or excluded volume) and (R') - L2" is the mean square size of a polymer. 

L/( 1 + g(R2)d/2C,) - 1, 
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